Volume 2: PROGRAMMING INFORMATION
Part 2: PROGRAM DESCRIPTIONS
Section 17: QDASQRT (B。106A)
Contents
Page
Chapter 1: INTRODUCTION
1.1 Purpose 1
1.2 Form of Distribution 1

1. 3 Method of Use 1
1.4 Accuracy 1
Chapter 2: FUNCTIONS
2. 1 Notation 2
3. 2 Format 2
4. 3 Entry and Exit 2
5. 4 Identifiers 2
Chapter 3: ERROR INDICATIONS 3
Chapter 4: METHOD USED
6. 1 Special Cases 3
7. 2 General Cases 3
Chapter 5: TIME TAKEN
5.1 Special Cases 4
8. 2 General Cases 4
Chapter 6: STORE USED 4Copyright English Electric Computers Limitedi

Printed in England by Engineering Unit, English Electric Computers Ltd.

Chapter 1: INTRODUCTION

1.1 Purpose

To calculate, as a double-length fraction, the square root of a double-length fraction, a.

1. 2 Form of Distribution

The program is distributed as a SIR mnemonic tape.

1. 3 Method of Use

The routine is assembled as a block of the user's program and entered as a sub-routine. It can be run at any program level and in any store module.

When QDASQRT is used, QDLA must also be held in store.

1. 4 Accuracy

The maximum error is $3 \times 2^{-34} \cdot\left(0.2 \times 10^{-9}\right)$

Chapter 2: FUNCTIONS

2. 1 Notation

$x(m, s)=$ most significant half of x
$x(1 . s)=1$ east significant half of x

2. 2 Format

A double-1ength fraction, x, is held in two consecutive locations, X and $\mathrm{X}+1$;

Bit 18 of $\mathrm{X}+1$ must be zero;
Bit 18 of X gives the sign of x ;
Bits 17-1 of X give the 17 most significant bits of x_{0} Bits 17-1 of $X+1$ give the least significant bits of x.

Negative number representation is by the usual 2's complement notation.

2. 3 Entry and Exit

A double-length number is held in two consecutive locations: only the first location is given below.

Entry
place a in QDASQRT+44
and enter 11 QDASQRT
8QDASQRT+1
Exit $\quad \sqrt{ }$ a in QDASQRT+46
N. B. The instruction pair

11 QDASQRT
8 QDASQRT+1
must not be part of a pseudo-program interpreted by QDLA.

2. 4 Identifiers

QDASQRT must be declared as a global identifier in all blocks of a SIR program which refer to it.

Chapter 3: ERROR INDICATION

If $a<0$
then 0000.010 is output continuously.

Chapter 4: METHOD USED

QDASQRT uses QDLA to interpret some of the double-length calculations.

4. 1 Special Cases

QDASQRT first tests for special values of the operand. If a is equal to any of these the appropriate answer is read and exit made immediately.

Special values are:
$a=0$
$a=1-2^{-34}$
In these cases \sqrt{a} is taken as a
4. 2 General Cases

Otherwise QDASQRT uses an iterative formula
taking $n=0,1,2,3, \ldots$
and $\quad x_{0}=1-2^{-34}$
$x_{n+1} \rightleftharpoons \frac{1}{2}\left(x_{n}+a / x_{n}\right)$
When $\quad \mathrm{x}_{\mathrm{nj+1}} \geq \mathrm{x}_{\mathrm{n}}$
then $\quad x_{n}$ is the best approximation to \sqrt{a}.

Chapter 5: TIME TAKEN

5.1 Special Cases

$a=0 \quad 570$ microseconds.
$a=1-2^{-34} \quad 1053 \mathrm{microseconds}$.

5. 2 General Cases

Approximate time taken is

$$
3.0+12.5 \mathrm{n} \text { milliseconds }
$$

where n is the number of iterations necessary。

Chapter 6: STORE USED
QDASQRT uses 52 consecutive locations.

