ELIOTT

Volume	2:	PROGRAMMING	INF	ORMATION

Part 2: PROGRAM DESCRIPTIONS

Section 17: QDASQRT (B. 106A)

Contents

			Page	3
	Chapter	1:	INTRODUCTION	
	<u>-</u>		1.1 Purpose 1	
			1.2 Form of Distribution 1	
			1.3 Method of Use 1	
			1.4 Accuracy 1	
	Chapter	2:	FUNCTIONS	
	-		2.1 Notation	
			2.2 Format 2	
			2.3 Entry and Exit 2	
			2.4 Identifiers 2	
	Chapter	3:	ERROR INDICATIONS 3	
	Chapter	4:	METHOD USED	
	-		4.1 Special Cases 3	
			4.2 General Cases 3	
	Chapter	5:	TIME TAKEN	
			5.1 Special Cases 4	
			5.2 General Cases 4	
	Chapter	6:	STORE USED \ldots 4	
Copyrigh		Eng	ish Electric Computers Limited i	
		2	July, 1968 (Issue 3)	

Printed in England by Engineering Unit, English Electric Computers Ltd. Chapter 1: INTRODUCTION

1.1 Purpose

To calculate, as a double-length fraction, the square root of a double-length fraction, a.

1.2 Form of Distribution

The program is distributed as a SIR mnemonic tape.

1.3 Method of Use

The routine is assembled as a block of the user's program and entered as a sub-routine. It can be run at any program level and in any store module.

When QDASQRT is used, QDLA must also be held in

store.

1.4 Accuracy

The maximum error is 3×2^{-34} . (0.2 x 10⁻⁹)

903 2.2.17.

Chapter 2: FUNCTIONS

2.1 Notation

x(m. s) = most significant half of xx(1. s) = least significant half of x

2.2 Format

A PARTIN PLAN AND A PARTICIPAL AND A

A double-length fraction, x, is held in two consecutive locations, X and X+1;

Bit 18 of X+1 must be zero; Bit 18 of X gives the sign of x; Bits 17-1 of X give the 17 most significant bits of x. Bits 17-1 of X+1 give the least significant bits of x.

Negative number representation is by the usual 2's complement notation.

2.3 Entry and Exit

A double-length number is held in two consecutive locations: only the first location is given below.

Entry

place a in	QDASQRT+44	
and enter	11QDASQRT	
	8QDASQRT+1	

Exit \sqrt{a} in QDASQRT+46

N.B. The instruction pair

11 QDASQRT 8 QDASQRT+1

must not be part of a pseudo-program interpreted by QDLA.

2.4 Identifiers

QDASQRT must be declared as a global identifier in all blocks of a SIR program which refer to it.

Chapter

3: ERROR INDICATION

If a<0 then 0000.010 is output continuously.

Chapter 4: METHOD USED

QDASQRT uses QDLA to interpret some of the double-length calculations.

4.1 Special Cases

QDASQRT first tests for special values of the operand. If a is equal to any of these the appropriate answer is read and exit made immediately.

Special values are:

a = 0 $a = 1 - 2^{-34}$ In these cases \sqrt{a} is taken as a 4.2 General Cases

Otherwise QDASQRT uses an iterative formula

taking	$n = 0, 1, 2, 3, \ldots$
and	$x_0 = 1 - 2^{-34}$
	$\mathbf{x}_{n+1} = \frac{1}{2}(\mathbf{x}_n + a/\mathbf{x}_n)$
When	$x_{n+1} \ge x_n$
then	$\mathbf{x}_{\mathbf{n}}$ is the best approximation to $\sqrt{\mathbf{a}}$

903 2.2.17.

Chapter 5: TIME TAKEN

5.1 Special Cases

a = 0 570 microseconds.

 $a = 1 - 2^{-34}$ 1053 microseconds.

5.2 General Cases

Approximate time taken is

3.0 + 12.5 n milliseconds

where n is the number of iterations necessary.

Chapter 6: STORE USED

QDASQRT uses 52 consecutive locations.